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Abstract The localized Hartree–Fock and the open-
shell LHF (OSLHF) approaches are reviewed and
rederived under a unique formalism. Three different
treatments of the OSLHF correction term are discussed
and results for excitation energies are presented for
small- and medium-size closed- and open-shell mole-
cules.

Keywords Density-functional theory ·
Exact-exchange · Optimized effective potential ·
Open-shell molecules

1 Introduction

The main reason for the success of the density func-
tional theory (DFT) [1,2] in the computation of the
electronic properties of molecules is its high accuracy/
computational cost ratio. Formally DFT scales as O(N3),
being N the number of basis functions, which is much
lower than other common ab-initio approaches, such
as Hartree–Fock (O(N4)), MP2 (O(N5)) or CCSD(T)
(O(N7)) [3]. The latter method is highly accurate but it
cannot be applied to large organic molecules.

On the other hand the accuracy of DFT depends on
the accuracy of the exchange-correlation (XC) func-
tional, which is not yet know and it must be approxi-
mated. Conventional XC-functionals, i.e, the local-
density approximation (LDA)[4–6] or the generalized
gradient approximation (GGA)[7–9] are still widely
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used in solid-state physics, while for an accurate pre-
diction of the electronic properties of organic molecules
hybrid DFT methods [10,11], i.e., containing a fraction
of the HF non-local exchange, are often required.

Several dozens of conventional/hybrid XC-function-
als have been developed in the last decades to obtain an
accurate description of the ground-state properties, such
as bond-lengths and vibrational frequencies. However,
with the advent of the time-dependent density func-
tional theory (TD-DFT) [12–19] various short-comings
of the XC-functional have been magnified[20]. While
with conventional/hybrid XC-functionals accurate total
energies can be obtained, the Kohn–Sham (KS) spec-
trum, which is the input quantity for TD-DFT, shows
several problems. In particular, the conventional
XC-functionals are not self-interaction-free and thus the
XC-potential does not show the right, i.e., −1/r asymp-
totic decay [21,22]. Thus, few bound-unoccupied orbi-
tals are present in the KS spectrum and the energy of
the highest occupied molecular orbital (HOMO) largely
underestimates the ionization potential. In this case, hy-
brid functionals do not improve the quality of the KS
spectrum as these methods are not pure-KS, i.e., in which
KS orbitals are obtained from a multiplicative KS poten-
tial. The KS-gap, i.e., the difference between the energy
of the lowest unoccupied molecular orbital (LUMO)
and the HOMO, represents a zero-order approxima-
tion to the TD-DFT excitation energies [23–25] but is
largely underestimated (overestimated) in conventional
(hybrid) approaches.

To improve the KS spectra several asymptotically-
corrected (AC) XC-functionals have been developed
[26–36]. In these methods the KS potential is constructed
in order to have the right −1/r asymptotic decay. These
methods strongly improve the KS spectra, but they are



982 Theor Chem Acc (2007) 117:981–989

often not variational, i.e., the energy-functional is not
know. In addition they do not solve fundamentally the
self-interaction problem, because the −1/r asymptotic
decay is not a sufficient condition to be self-interac-
tion free. Another approach to treat the self-interaction
problem is to use self-interaction corrections [37], which
lead to orbital-dependent potential and thus no longer
within the framework of a pure KS formalism, or are
not invariant with respect to unitary transformations of
the orbitals [38–41].

The self-interaction problem can instead be solved if
the exchange is treated exactly in the KS formalism. Var-
ious approach to treat Exact EXchange (EXX) in mole-
cules have been presented in the last years
[42–48]. However, numerical problems are always pres-
ent for gaussian basis set[49,50]. For this reason the
localized Hartree–Fock (LHF) approach have been
developed [50].

2 Properties and applications of LHF method

The LHF was derived under the assumption that a local
potential exists which generates the same determinant
wavefunction of Hartree–Fock (HF), and numerical re-
sults showed that this assumption was almost valid [50].
The LHF approach is quite close to the one of Krieger
et al. (KLI) [51], which was derived as an approximation
to the EXX equation. However, the KLI method in not
invariant under a rotation of occupied orbitals, a prop-
erties which is instead preserved in the LHF approach.
Thus, it can be shown that KLI is an approximation
of the LHF approach. The LHF approach is formally
equivalent to the common-energy denominator approx-
imation (CEDA)[52,53] which was also derived as an
approximation of EXX equation.

The LHF potential is functional of orbitals and thus is
strong non-local functional of the density . This property
can be seen in Fig. 1 where we plot on a double log-
scale the Slater–Dirac[4,5], the Becke[7] and the LHF
exchange-potential for, e.g., the pyridine molecule.

The Slater–Dirac exchange potential is proportional
to ρ1/3, thus it is a straight line on Fig. 1. The non-
locality can be seen on Fig. 1 when for a given density
different values of the exchange potential are present.
While the gradient-corrected Becke exchange poten-
tial contains a very small degree of non-locality, the
LHF is strongly non-local. The non-locality increases
far away from the system, i.e., when the density goes to
very small values; the exchange-potential is also strongly
non-local where the density is about 100–10−1 a.u., i.e.,
near atomic shells.
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Fig. 1 Absolute value of the exchange potential as a function of
the density for the pyridine molecule
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Fig. 2 KS orbital energies for the pyridine molecule using differ-
ent methods. The experimental ionization potential is shown by a
dashed line

The main advantage of the LHF approach is that it
allows to obtain a correct Kohn–Sham spectrum. Often
XC-functionals were approximated in order to obtain
valid DFT total energy, while the KS orbitals were con-
sidered only auxiliary quantities. In Fig. 2 we report the
Kohn–Sham energy levels for the pyridine molecules us-
ing different approaches. The n orbital is also indicated.
The Slater–Dirac exchange potential (XLDA) leads to
a Kohn–Sham spectrum with very few unbound virtual
orbitals. In addition the energy of the HOMO is very far
from the experimental ionization potential (IP) value of
9.60 eV [54] shown as a dashed line. The use of gra-
dient correction (Becke) leads only to a shift-down of
one tenth of an eV. The inclusion of correlation contri-
bution (BLYP[7,8]) has instead larger effects and shifts
down all orbitals by about 1 eV. Thus, the LYP correla-
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tion increases the number of bound virtual orbitals and
decreases the HOMO energy. The use of hybrid func-
tionals with a fraction of non-local HF exchange leads
to a KS spectrum with a gap 2 eV larger than BLYP.
Using B3LYP[10] the HOMO energy is 7.1 eV which is
much closer to the experimental results than in XLDA,
however fewer bound virtual orbitals than BLYP are
present. In HF the HOMO energy is almost exactly the
experimental IP, but it has the wrong character. The
ionization potential has indeed a n-type character and
thus it should be compared to the HF HOMO-3 energy,
which is −11.4 eV. This means that for pyridine orbital-
relaxation and correlation effect are as large as 1.8 eV,
so in HF the energetical order of orbitals is not correct.
In addition in HF no bound virtual orbitals are found, as
the virtual orbitals are related to a system of N + 1 elec-
tron. The last but one column of Fig. 2 shows the orbital
spectrum obtained with the LHF approach. Comparing
to the previous methods three distinctive advantages are
present: (1) a very large number of bound virtual orbi-
tal can be seen, due to the correct, i.e., −1/r asymptotic
decay of the exchange potential. (2) the HOMO has a
n character as it should be; (3) the HOMO energy is
11.2 eV and it is closer to the experimental IP than all
the previous approaches. Finally, we consider the LHF
potential plus the LYP correlation. As in BLYP the LYP
correlation shifts down all orbitals by about 1 eV. In
this case the LYP correlation worsen the KS spectrum,
as the HOMO is incorrectly shifted down.

The LHF potential showed surprising features in the
asymptotic region [55,56]. The LHF exchange potential
asymptotically approaches −1/r only if the HOMO orbi-
tals does not show nodal surfaces. Otherwise the asymp-
totic behavior is C − 1/r where C is a constant. This
constant can be several eV and it has been shown that it
can affect the energies of Rydberg orbitals [55] meaning
the all AC methods are not formally correct as they do
not consider these constants. Note that these asymptotic
properties will be retained also if the full exchange-cor-
relation functional is employed[56,57]

In the last years, the LHF method have received a
lot of attention. The reason of its success is not only the
simple and elegant formalism, but its computational effi-
ciency and the straightforward implementation is stan-
dard quantum-chemistry codes. Indeed a very simple
approach to compute the Slater potential were pro-
posed[50] which is based on the resolution of iden-
tity using orbital basis set, and thus without the use of
new auxiliary-basis functions. Importantly, the compu-
tational cost of the LHF approach is equivalent to the
one of hybrid methods. Recently, an auxiliary-basis ap-
proach for the computation of the Slater potential has
been presented [58].

In the last years the LHF approach have been suc-
cessfully used in different applications:
Della Sala and Görling [59] found that if LHF orbitals
and eigenvalues are used in TD-DFT calculations accu-
rate valence and Rydberg excitation energies can be ob-
tained; Hupp et al. [60–62] found that LHF orbitals are
well suited as single electron basis for multiple-reference
configuration interaction calculations; Weimer et al. [63]
found that the LHF potential for anion is attractive and
thus it can bind anion species; different authors[64–66]
investigated the NMR nuclear shielding constants: they
found that thanks to the more accurate KS gap, the LHF
potential leads to very good results. More recently it was
found that LHF yields more accurate results than EXX,
showing that approximations made in LHF probably
lead to a correlation contribution[67]. In these NMR
calculations localized hybrid functionals [64,66,68–70]
were also considered. In these functionals the fraction
of the non-local Hartree–Fock operator is substituted
by the LHF potential, leading to a pure KS approach.
However, such local hybrid functional has not the right
asymptotic behavior; Arbuznikov and Kaupp [70–72]
also considered the use of the LHF technique to con-
struct local kinetic energy density dependent exchange-
correlation potential; Teale and Tozer investigate the
potential energy surfaces (PES) of molecules [73]. Only
diatomic molecules were consider in order to extract
optimized bond-lengths from the PES. We note in fact
that the LHF approach is not variational, because the
LHF energy functional is not know. The LHF energy
functional is only approximately given by the Hartree–
Fock exact exchange. This is not a practical limitation
as the difference with respect HF are very small; Fabi-
ano and Della Sala[74] studied the torsional potential
of conjugate molecules, comparing different exchange
functionals. It was found that using the LHF approach
the resulting torsional barriers are lower than other ex-
change methods, and thus these can be improved by
a correlation contribution. LHF has also been applied
to molecular chains, such as polyenes/cumulenes [75]
and oligothiophenes [76] in order to compared the KS
energy gap with respect the chain-length and with re-
spect other methods. It was found that for accurate TD-
DFT excitation energies the improvement of the KS
gap with respect conventional DFT approaches is not
enough and better TD-DFT kernel are instead required;
The CEDA (LHF) approach was applied to investi-
gate the polarizabilities of hydrogen chains[52,53] show-
ing that it is superior to the KLI approximations. The
LHF method has been also applied to very large sys-
tem[77,78] and it was found that LHF eigenvalues are
well suited for the interpretation of scanning-tunneling
microscopy images[78].
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From a formal point of view various extensions of the
LHF method have been considered.

In order to apply an effective exact exchange to open
shell atoms and molecules the open-shell localized
Hartree–Fock (OSLHF) method [79] have been devel-
oped. Open-shell systems in DFT are usually treated
within an unrestricted formalism, which however has
the problem of spin-contamination. While implementa-
tions of unrestricted or spin-dependent LHF [71,79,80]
are also present in literature, the OSLHF is instead a
restricted formalism based on the symmetrized Kohn–
Sham theory [81–83] which allows the determination of
the energetically lowest excited-state of a given symme-
try. Within standard XC-functionals instead it is not pos-
sible to apply the KS formalism to states which are not
ground states [84]. In fact symmetry dependent density-
functionals and KS wave functions with well-defined
symmetry labels referring to the full symmetry group of
the molecule are required. If we consider, e.g., the low-
est singlet and triplet excited state of a model closed-
shell system where both states are characterized by a
pure HOMO → LUMO transition, then it is clear that
these states will show not differences using conven-
tional XC-functional because the only variable enter-
ing these functionals is the electron density, which is
identical in the two states. In an spin-polarized formal-
ism it is possible to treat the triplet excited-state and
the (ensemble) averaged singlet/triplet configuration. If
the first state has energy Et and the second one en-
ergy Ea then the energy of the singlet excited-state is
Es = 2Ea −Et[85]. These�SCF approaches [85–90] can
also be generalized to configurations leading to more
complicated multiplet structures. However, these ap-
proaches are only approximated because conventional
XC-functionals, which are used for a description of indi-
vidual states, are used to describe ensembles of states al-
though such functionals are highly nonlinear. In addition
these �SCF calculations are performed using conven-
tional XC-functionals thus neglecting any state- and the
symmetry-dependence[83]. The OSLHF potential in-
stead depends directly on the symmetry of the state and
thus can been used to computed many-particle states of
atoms and molecules and thus this method should not be
confused with the restricted-open Kohn–Sham (ROKS)
formalism used in different context [88,91,92].

The OSLHF has been also generalized to compute
excited state which are not the lowest of their symmetry
[93]. This method is based on the generalized adiabatic
connection (GAC) KS approach [82,83,94] which leads
to a self-consistent KS treatment of individual excited
state. Excitation energies can be computed as in �SCF,
but the state- and the symmetry-dependence is included
in the KS potential. In contrast to common time-depen-

dent density-functional methods the GAC-OSLHF ap-
proach is capable of treating doubly or multiply ex-
cited states and it can be easily applied to molecules
with an open-shell ground state. With the GAC-OSLHF
approach it is possible to obtain an unique local multi-
plicative potential which acts on all orbitals. Such poten-
tial have been very recently used to compute excitation
energies with a Quantum-Montecarlo approach [95]

Recently, Hesselman[96,97] extended the LHF
approach by searching for a local potential which gen-
erated Brueckner orbitals instead of Hartree–Fock orbi-
tals. In this way an effective exchange-correlation
potential has been obtained. Results are comparable
to ab-initio DFT approaches [98,99].

In this article, we will re-derive the LHF and the
(GAC) OSLHF approach using an alternative formal-
ism. The LHF and OSLHF were originally derived in
different way considering the eigenvalues of a many-par-
ticles equation or using an approximation to the EXX
equation. Here instead a more simple formalism is de-
scribed which can be used to derive LHF and OSLHF.
In this article we will also consider the effects of the
different treatments of the off-diagonal elements in the
OSLHF potential. We will present results on excitation
energies for small- and medium-size closed- and open-
shell system.

3 Method

In this section we derive the LHF and the OSLHF po-
tential using a simple formalism.

We start from a generic non-local and orbital depen-
dent operator V̂i which satisfies

(Ĥ1 + V̂i)φi(r) = εiφi(r), (1)

where Ĥ1 includes the one-electron operator and the
coulomb potential. Then we consider a local KS ex-
change potential vx(r) which satisfies

(Ĥ1 + vx(r))ψi(r) = ωiψi(r). (2)

The KS orbitalsψi are not eigenfunctions of Ĥ1 + V̂i but
they are related by the following relation:

(Ĥ1 + V̂i)ψi(r) = (Ĥ1 + vx(r)− (vx(r)− V̂i))ψi(r)

= ωiψi(r)− (vx(r)− V̂i)ψi(r). (3)

If we make the assumption that a local vx(r) potential
exists that generates the (partially) occupied ψi orbitals
which can be obtained as an unitary transformation of
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the (partially) occupied φi orbitals, i.e.,

ψi(r) =
occ.∑

j

cjiφj(r), ∀ i ∈ occ.

then we have

(Ĥ1 + V̂i)ψi(r) =
occ.∑

j

cjiεjφj(r) =
occ.∑

k

dkiψk(r) (4)

with

dki =
occ.∑

j

cjiεjcjk. (5)

By equating the right-end side of Eq. (3) and (4), multi-
plying by ψj(r) and integrating we obtain

δijωi − 〈ψj|vx(r)− V̂i|ψi〉 = dji. (6)

Note that expression (6) is valid if ψj is a (partially)
occupied orbital; if ψj is a virtual orbital we have

dji = 〈ψj|vx(r)− V̂i|ψi〉 = 0. (7)

Substituting Eq. (6) into (4) and equating to Eq. (3) we
have

(vx(r)− V̂i)ψi(r) =
occ.∑

j

〈ψj|vx(r)− V̂i|ψi〉ψj(r). (8)

Considering that the total density is

ρ(r) = ns

occ.∑

i

fiψi(r) (9)

(where fi is the occupation number and ns the spin
degeneration) we then multiply Eq. (8) by fiψi(r) and
sum over (partially) occupied orbitals:

occ.∑

i

vx(r)fiψi(r)ψi(r)− fiψi(r)V̂iψi(r)

=
occ.∑

i,j

fi〈ψj|vx(r)− V̂i|ψi〉ψi(r)ψj(r). (10)

Expression (10) can also be rewritten in a explicit form
for vx(r):

vx(r) = vSla
x (r)+ vcorr

x (r) (11)

with

vSla
x (r) = ns

ρ(r)

occ.∑

i

fiψi(r)V̂iψi(r) (12)

and

vcorr
x (r) = ns

ρ(r)

occ.∑

i,j

fi〈ψj|vx(r)− V̂i|ψi〉ψi(r)ψj(r). (13)

To obtain the LHF approximation for closed-shell
systems[50] we set ns = 2,fi = 1, and V̂i = v̂NL

x , where
the operator v̂NL

x is the non-local exchange operator

v̂NL
x (r, r′) = −

occ.∑

i

fi
ψi(r)ψi(r′)

|r − r′| . (14)

In case of open-shell systems and/or orbital depen-
dent operator the correction term so obtained is non-
symmetric if i and j are interchanged. We can write the
correction term as

vcorr
x = 2

ρ(r)

occ.∑

j≤i

hijCijψi(r)ψj(r) (15)

with hij = 2 if j < i and hij = 1 if j = i. Simplest symmet-
rizations are

Cij = fi

2
〈ψj|vx(r)− V̂i|ψi〉 + fj

2
〈ψj|vx(r)− V̂j|ψi〉 (16)

or

Cij = fmax(i,j)〈ψj|vx(r)− V̂max(i,j)|ψi〉, (17)

where max(i, j) indicates which orbital-index (or energy)
is higher.

The OSLHF potential can be obtained in if we set
ns = 2 and

V̂i = v̂NL
x + ūi(r)+ ˆ̄vNL

x,i , (18)

where

ūi(r) =
occ.∑

j

2fj(Aij − 1)
∫

dr′ψj(r′)ψj(r′)
|r − r′| , (19)

ˆ̄vNL
x,i (r, r′) =

occ.∑

j

fj(Bij − 1)
ψj(r)ψj(r′)

|r − r′| (20)

(these operators are non-zero only for open-shell orbi-
tals). The operators in Eq. (18) are the ones which ap-
pears in the restricted Hartree–Fock equations [100,101]
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and Aij, Bij are the Roothaan coefficients. We then ob-
tain for the Slater potential

vSla
x (r) = ns

ρ(r)

occ.∑

i

fiψi(r)v̂NL
x ψi(r)

+ ns

ρ(r)

open∑

m

fmψi(r)
[
ūm(r)+ ˆ̄vNL

x,m

]
ψi(r) (21)

and for the correction term

vcorr
x (r) = ns

ρ(r)

occ.∑

j≤i

hjifi〈ψj|vx(r)− v̂NL
x |ψi〉ψi(r)ψj(r)

− ns

ρ(r)

open∑

m

occ.∑

j≤m

hmjfm

×〈ψj|ūm(r)+ ˆ̄vNL
x,m|ψm〉ψm(r)ψj(r) (22)

if the symmetrization of Eq. (17) is used. Equations (21)
and (22) are identical to the one derived in the original
OSLHF work [79].

If the symmetrization of Eq. (16) is used then the
correction term is

vcorr
x (r)

= ns

ρ(r)

occ.∑

j≤i

hji
fi + fj

2
〈ψj|vx(r)− v̂NL

x |ψi〉ψi(r)ψj(r)

− ns

ρ(r)

open∑

m

closed∑

j

fm〈ψj|ūm(r)+ ˆ̄vNL
x,m|ψm〉ψm(r)ψj(r)

− ns

ρ(r)

open∑

m

open∑

q≤m

hmqRmqψm(r)ψq(r) (23)

with

Rmq = fm

2
〈ψq|ūm(r)+ ˆ̄vNL

x,m|ψm〉

+ fq

2
〈ψq|ūq(r)+ ˆ̄vNL

x,q |ψm〉 (24)

We shall call OSLHF-A this approach, i.e., with correc-
tion term coefficients of Eq. (23).

3.1 Diagonal approximation

A much simpler derivation can be obtained under the
assumption that HF and KS occupied orbitals coincides
one by one, i.e., without any rotation. The orbitals ψ are
now eigenvectors of the non-local operator

(Ĥ1 + V̂i)ψi(r) = εiψi(r) (25)

and of the local KS Hamiltonian

(Ĥ1 + vx(r))ψi(r) = ωiψi(r). (26)

By subtracting these two equations we have

(vx(r)− V̂i)ψi(r) = (ωi − εi)ψi(r)

= 〈ψi|vx(r)− V̂i|ψi〉ψi(r). (27)

Multiplying by fiψi(r) and summing over all (partially)
occupied orbitals we have

vx(r)ρ(r)−
∑

i

fiψi(r)V̂iψi(r)

=
∑

i

fi〈ψi|vx(r)− V̂i|ψi〉ψi(r)ψi(r) (28)

or

vx(r) = ns

ρ(r)

occ.∑

i

fiψi(r)V̂iψi(r)

+ ns

ρ(r)

occ.∑

i

fi〈ψi|vx(r)− V̂i|ψi〉 |ψi(r)|2 . (29)

If we set ns = 2, fi = 1, and V̂i = v̂NL
x in Eq. (29) then

we obtain the KLI[51] approximation to the exchange
potential. Thus, the KLI approach can be derived under
the assumption that KLI and HF orbitals are identical
one-by-one. The KLI potential is identical to LHF if
off-diagonals elements are neglected in the correction
term. Casida et al. [102] considered the KLI approxima-
tion to the full exchange-correlation potential using the
self-energy as the non-local operator. We here define
the OSLHF-D approximation, i.e., using ns = 2 and

V̂i = v̂NL
x + ūi(r)+ ˆ̄vNL

x,i (30)

in Eq. (29) which lead to a correction term given by

vcorr
x (r) = ns

ρ(r)

occ.∑

i

fi〈ψi|vx(r)− v̂NL
x |ψi〉 |ψi(r)|2

− ns

ρ(r)

open∑

m

fm〈ψm|ūm(r)+ ˆ̄vNL
x,m|ψm〉 |ψm(r)|2

(31)

4 Computational Details

Calculations have been carried out a local version of the
TURBOMOLE program package [103–107].

We either used experimental geometries (CO with
bond distance of 1.128 Å, N2 with bond distance of
1.098 Å, formaldehyde [108]) or geometries optimized
with the B3LYP/TZVP [10,109] approach.

The (OS)LHF calculation have been performed us-
ing the XCU1T basis sets of Ref. [79] but for Benzyl,
Pyridine and Naphthalene where a TZVP basis set was
employed. For diatomic molecules an additional highly
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diffuse basis functions (geometric series with a
half-width up to 20 a.u.) were placed in the center of
mass of each molecule.

The quality of the grid was checked by calculating
the norm of all virtual orbitals by numerical integration.
The resulting norm in all cases lies within the range of
0.999–1.001.

For each open-shell (closed-shell) molecule and state
we compare OSLHF(LHF), OSLHF-M(LHF), OSLHF-
D(KLI) excitation energies and we calculated the
corresponding excitation energies using the
TD-UB3LYP(TD-B3YLP) approach.

5 Excitation energies on medium-size closed and open
shell molecules

In Table 1 we report selected excitation energies of
various closed- and open-shell systems using the three

different OSLHF approaches and the standard
TD-B3LYP approach. In the last column experimental
results are reported. OSLHF excitation energies have
been obtained by subtracting the (OS)LHF total en-
ergy in the ground-state from the OSLHF total energies
in the excited states. Note that all the selected excita-
tions are dominated by single electron transition. For
all the systems the OSLHF values are higher than TD-
B3LYP: this is due to the exact-exchange treatment and
the neglect of the correlation. For CO, N2 and BeF the
OSLHF results are closer to the experimental results
than TD-B3LYP, while for larger system TD-B3LYP is
more accurate than OSLHF. However, the mean abso-
lute error (MAE), reported in the bottom of Table 1 for
all these selected systems/states is comparable. Concern-
ing the three different OSLHF approaches we found
than the OSLHF-A yields always excitation energies
higher than OSLHF while OSLHF-D are in between

Table 1 Excitation energies in eV using the OSLHF, OSLHF-A and OSLHF-D approaches and comparison with TD-B3YLP and
experimental results

System/State OSLHF OSLHF-A OSLHF-D TD-DFT Exp.

CO
1�(5σ → 3π∗) 11.316 11.397 11.362 10.261 11.55a

3�(5σ → 3π∗) 11.254 11.335 11.300 10.225 11.53a

1�(5σ → 6σ) 10.784 10.834 10.850 9.776 10.78a

3�(5σ → 6σ) 10.281 10.366 10.372 9.496 10.40a

1�(5σ → 2π∗) 8.989 9.016 8.988 8.380 8.51a

3�(5σ → 2π∗) 5.979 6.364 6.067 5.838 6.32a

N2
1�+

g (3σg → 4σg) 12.962 12.998 12.982 11.207 12.20a

3�+
g (3σg → 4σg) 12.616 12.633 12.611 10.960 12.00a

1�g(3σg → 1πg) 10.216 10.260 10.223 9.260 9.31a

3�g(3σg → 1πg) 8.247 8.260 8.236 7.572 8.04a

Formaldehyde
3A2(n → π∗) 3.400 3.553 3.527 3.159 3.50b

1A2(n → π∗) 4.044 4.217 4.197 3.891 4.10b

3B2(n → 3s) 6.979 7.131 7.079 6.326 7.09b

1B2(n → 3s) 7.164 7.353 7.289 6.445 7.13b

Pyridine
3A1(π → π∗) 4.620 4.620 4.623 3.946 4.10b

3B2(n → π∗) 5.267 5.530 5.433 4.052 4.10b

1B2(n → π∗) 5.895 6.073 5.994 4.799 4.59b

3A2(n → π∗) 6.476 6.686 6.610 4.939 5.40b

1A2(n → π∗) 6.629 6.857 6.784 5.077 5.43b

BeF
2�(5σ → 2π) 4.244 4.267 4.241 4.097 4.138c

2�+(5σ → 6σ) 6.260 6.262 6.261 5.566 6.158c

Benzyl
2A2(1a2 → 3b2) 4.046 4.042 4.025 3.17c 2.7c

2A2(3b2 → 2a2) 4.219 4.217 4.209 3.84c 3.9c

Naphthalene+
2B1u(π → π∗) 1.227 1.232 1.225 1.13d 0.73d

2B2g(π → π∗) 2.742 2.742 2.744 2.15d 1.93d

MAE 0.508 0.535 0.521 0.507

a See Ref. [110], b Ref. [108], c Ref. [111], d Ref. [112]
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them. The difference between these approach are always
very small: in fact several off-diagonal matrix elements
vanished by symmetry. As an example, the OSLHF and
OSLHF-A approaches yields exactly the same results
for the 2B2g state of the Naphthalene cation because the
only open shell orbital 1b2g cannot mix with any other
orbitals. The results presented here shows that the orig-
inal OSLHF approach yields excitation energies slightly
better than the OSLHF-D and OSLHF-K.

6 Conclusions

The LHF approach has received a lot of interest in
the last 5 years as it is a very simple and very effi-
cient approach to compute self-interaction free Kohn–
Sham orbitals. The LHF orbitals have been used success-
fully for several applications. In this article all the LHF
and OSLHF approaches and applications have been
reviewed. The OSLHF method have been re-derived
by localizing the non-local and orbital-dependent oper-
ators of the restricted Hartree–Fock method. As the
correction term is non symmetric two different sym-
metrization techniques have been compared as well as
the case in which only off-diagonal elements are not
considered. Results selected for closed- and open-shell
molecules show that the excitation energies computed
with the OSLHF approaches has accuracy comparable
to standard TD-DFT approaches.
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